数学(大学入試問題)

場合の数・確率

【場合の数】何となくでは絶対にダメ!考え方、規則、数え方を正しく学ぶ1問

正三角形が何個あるか?という小学生でも解ける場合の数の問題を、しっかりと数え上げるための良問。場合の数において最も重要なのは数え上げ。ただ闇雲に数えていては数え漏れ、重複が生じます。しっかりと数え上げるための考え方を学ぶための1問です。
図形と方程式

【頻出問題】【差がつく2次数学】実数条件と領域問題

初見では多くの受験生が間違う問題。対称式の形の軌跡の問題。解と係数の関係から判別式を使って実数条件を考える問題。2次試験で差がつく問題だからこそ、しっかりと考え方を理解し、特典源にしたい問題。
京都大学

2018京都大学|n^3-7n+9が素数となるn(文系第3問、理系第2問)

素数に関する有名頻出問題。数学の2次試験で差がつきやすい整数分野の問題について、ただ答えが出せるだけの勉強ではなく、どのように考えるのか、思考過程を丁寧に解説。同じ問題は出ませんが、同じ形式の問題は出題されます。しっかりと考え方を学び、2次数学でしっかり得点源に!
整数問題

合同式(基本編)基本的な問題で合同式を使う練習

合同式を使いこなすことで、整数分野の問題(余りに関する問題)を簡略化して処理できる。しかし慣れが必要であるため、基本的な問題を用いて合同式に慣れるための演習問題。13の100乗を9で割った余り、nの2乗を3で割った余りなど、頻出問題を使って演習。
整数問題

合同式とは?合同式の基本性質を理解し、使えるようにする

合同式とは?2次試験(数学)の整数の分野で合同式が使えるかどうかは大きな差がつきます。合同式を知らない、初めて習った人のための基本性質のまとめ。
ベクトル

1問を3分野からアプローチ[2次数学の数学思考力を鍛える]

図形と方程式、媒介変数を利用して三角関数、ベクトルの内積を利用した3分野からのアプローチを考える。分野を決めるけることなく、柔軟な思考を行い、本番でも様々なアプローチが行えるような解法を3つ紹介。他の受験生と差がつく思考力を鍛える。数学ⅡB
数学(大学入試問題)

媒介変数表示とは?

簡単な例題を用いて、媒介変数(パラメータ)表示が何かを理解し、しっかり使えるようにする。
2次関数

2変数関数の最大値・最小値【1文字固定法(予選決勝法)】

1文字固定(予選決勝法)と言われる大学受験では頻出テーマについて考え方を身につけよう。2次関数の最大値、最小値。数学2次試験対策。頻出・良問
ベクトル

【差がつく考え方】平面図形の3つのアプローチ!(幾何・座標・ベクトル)

2次試験の数学において、平面図形は合否を分けることがよくあります。幾何、座標、ベクトルの3タイプのアプローチの仕方を学びましょう。最後まで解けなくても、部分点を取ることが大切。練習でできないことは本番ではできません!
数学(大学入試問題)

数学で受験生を応援するブログを開設

大学受験に向けての数学の考え方、また受験生やその保護者に向け、塾講師と教師の経験から有益な情報を提供するブログです。