京都大学

分野まとめ

【2023京都大学】文系・理系数学|問題・解答・解説

2023年・京都大学・文系・理系の問題、解答、解説。京大過去問題演習、対策。数学解答速報。前期日程
2023年入試問題

【2023京都大学・理系・第6問】三角関数とチェビシェフの多項式

cosθ=1/p(pは素数)のとき、θ=(m/n)πとなる正の整数m,nは存在するか否か。チェビシェフの多項式(cosのn倍角についての性質)を利用。2023京都大学・理系・第6問。解答・解説。京大過去問題演習対策。数学Ⅱ:三角関数
2023年入試問題

【2023京都大学・理系・第5問】線分PQの通過してできる立体の体積

線分PQの通過する立体の体積について。平面x=tの断面積を考え、積分する体積の典型問題。やや難。2023京都大学・理系・第5問。解答・解説。京大対策。数学Ⅲ:微分積分。立体の体積
2023年入試問題

【2023京都大学・理系・第4問】関数の最大値・最小値|置き換え、単調増加・減少グラフの利用

置き換え、範囲の確認を行う典型頻出の関数の最大値・最小値の問題。2023京都大学・理系・第4問解答・解説。京大過去問演習対策。数学Ⅲ:微分
場合の数・確率

【2023京都大学・理系・第3問】n個のさいころの出た目の積が15で割り切れる確率

n個のさいころの出た目の積が5で割り切れる確率、15で割り切れる確率。余事象の利用。ドモルガンの法則の利用。2023京都大学・理系・第3問。基礎・基本。定期考査対策。国公立2次試験。京大過去問演習。数学A:場合の数と確率
式と証明

【2023京都大学・理系・第1問】部分積分、x^2023-1をx^4+x^3+x^2+x+1で割った余り

問1対数関数の部分積分。問2整式の割り算による余り。n乗の差の因数分解の公式利用。2023京都大学・理系・第1問。解答・解説速報。過去問題演習。数学Ⅱ,Ⅲ。
2023年入試問題

【2023京都大学・文系・第5問】積分区間が定数の定積分を含む関数、偶関数・奇関数の利用

定積分を含む関数。定数をa,b,cとおき、連立方程式。積分計算において、偶関数・奇関数の活用。2023京都大学・文系・第5問。解答・解説。京大・東大、難関大学対策。数学Ⅱ:積分
漸化式

【2023京都大学・文系・第4問】漸化式(和と一般項)、等差×等比数列の総和

Snが与えられた漸化式から一般項anを求める。階差数列型に帰着し、等差数列と等比数列の積の総和を考える。頻出・重要入試問題。2023京都大学・文系・第4問。解答・解説。過去問題対策。数学B:数列(漸化式)
2023年入試問題

【2023京都大学・文系・第3問】半径1の円に内接する正五角形の一辺の長さが1.15より大きいか否か

三角関数2倍角、3倍角の公式の証明。半径1の円に内接する正五角形の一辺の長さについて。36°(π/5)の三角比の値について。2023京都大学・文系・第3問。解答・解説。東大・京大演習・過去問題対策。数学Ⅱ:三角関数
ベクトル

【2023京都大学・文理・第2問】空間の2直線が交点をもつときの線分比|空間ベクトル

空間内の2直線が交点をもつ条件。共線条件からそれぞれの直線上の点を表現し、それら2点が一致するという考えから解く。2023京都大学・文理共通・第2問。解答・解説。数学B:空間ベクトル
場合の数・確率

【2023京都大学・文系・第1問】さいころの目の積が5の倍数、3乗根の有理化

(問1)n個のさいころの目の積が5で割り切れる確率(問2)3乗根の分母の有理化。2023京都大学(前期)・文系・第1問。解答・解説速報。場合の数・確率、指数
京都大学

【1993京都大学】次数決定f(x)が定数であることの証明

頻出・次数決定問題。f(x)のn,n-1次の係数に注目し、係数比較から考える。1993京大・文理共通・過去問題演習・対策。背理法。数学Ⅱ
式と曲線

【1993京都大学】Pから双曲線に引いた2つの接線。2接点とPで囲まれた三角形の面積の最小

双曲線に点P(0,p)から引いた接線。2接点A,Bと点Pによってできる△PABの面積が最小となるときのpの値。1993京大・理系・第1問。数学Ⅲ:式と曲線、微分。
複素数平面まとめ(数Ⅲ)

【2003京都大学】1の虚数立方根w(オメガ)、因数定理

多項式 (x^{100}+1)^{100}+(x^2+1)^{100}+1 は多項式 x^2+x+1 で割り切れるか.オメガ(w)を利用した有名入試問題。2003京都大学・過去問演習・対策。数学Ⅱ;複素数と方程式
京都大学

【2013京都大学】2次導関数を利用した最大値、偶関数の利用

微分=0の値が求められないとき、2次導関数を利用した最大・最小値を求める微分の典型・頻出問題。2013京大過去問を用いて演習・対策を解説。また差がつくポイントとして、偶関数、奇関数の活用。数学Ⅲ:微分
京都大学

【2012京都大学】部分積分、tanθの置換積分|数学Ⅲ:積分の計算

部分積分と置換積分の教科書レベルの基本的な内容の積分計算。京大2012年度過去問対策。入試演習。数学Ⅲ:積分。2012京都大学・理系・第1問[2]
京都大学

【2011京都大学】置換積分、三角関数の積分(x=asinθ)|数学Ⅲ:積分の計算

根号(ルート)を含む式の置換積分。教科書レベルの基本的な内容の積分計算。京大2011年度過去問対策。入試演習。数学Ⅲ:積分。2011京都大学・理系・第1問[2]
京都大学

【2007京都大学・甲・第6問】回転体の体積|2曲線で囲まれた部分をx軸周りに回転

数学Ⅲの回転体の体積。基本的な問題演習として、京都大学の過去問を用いて演習・解説。2007京大・理系過去問演習・対策。数学Ⅲ積分。
京都大学

【2012京都大学】数列の極限|公比rの値による場合分け

等比数列rのn乗の極限は、rの大きさ(r<-1,r=-1,-1<r<1,r=1,1<r)の5つの場合分けで考えるのが基本である。その例題演習として、2012京都大学の過去問を利用して練習。京大過去問。2次試験、定期考査対策。数学Ⅲ:極限
京都大学

【2021京都大学】平均値の定理|f(a)=af(1)を満たすとき、y=f(x)の接線で原点を通るものが存在

平均値の定理を利用した、存在証明。与えられた関係式から、平均値の定理を利用し、原点を通る直線へと式変形。2021京大・理系。過去問対策、演習。数学Ⅲ
京都大学

【2002京都大学】アルキメデスの螺旋|極方程式r=θの曲線の長さ

アルキメデスの螺旋の曲線の長さを求める問題。2002年京大過去問演習・対策。京都大学では、2009、2021年にも曲線の長さが出題されている。極方程式から媒介変数表示にし、積分を利用して求める。頻出・重要問題。
京都大学

【2009京都大学】極方程式、媒介変数、曲線の長さ|r=1+cosθ(0≦θ≦π)

極方程式r=1+cosθの0≦θ≦πの部分の曲線の長さについて。媒介変数表示し、積分を用いて計算(三角関数の積分)。この1問で、三角関数の公式(加法定理、半角、倍角など)、積分、極方程式、媒介変数など様々なことが復習できる良問。2009年京大、理系、過去問演習、対策。
積分まとめ

【2021京都大学・理系・第4問】曲線の長さ(数学Ⅲ:積分の応用)

曲線の長さの公式と例題。基本的な公式に当てはめて計算するだけの基礎問題。1/cosxの置換積分の計算も典型・頻出。2021京大(理系)過去問演習・対策。
数列

【2010京都大学】数学的帰納法(全段仮定)|差がつく良問(数学B数列)

n≦kを満たすすべてのnで成り立つと仮定し,n=k+1のときに示す.数学的帰納法の有名3タイプのうちの「全段仮定法」.経験で差がつく入試問題.2010京大過去問演習・対策。数学B。また別解として背理法の紹介。