数学(大学入試問題)

【差がつく】正領域と負領域の例題と考え方|数学Ⅱ:図形と方程式

直線と線分が交わるための条件範囲について。数学Ⅱの4STEPの問題を例題として正領域・負領域について考え方を説明。差がつく重要入試問題。2次試験対策、難関大学対策。
数学(大学入試問題)

【2021東北大学・文】共通接線と放物線で囲まれた図形の面積|頻出・重要問題

3次関数と2次関数の共通接線の求め方。2通りの解答を紹介。また、共通接線と2次関数で囲まれた面積。固まりとしての積分、共通テスト(センター試験)や私立受験のマーク形式テストで使える裏技面積公式。
数学(大学入試問題)

【漸化式15】分数型(発展)重解タイプ|解法パターン|数学B数列

漸化式の解き方・解法まとめ。分数型の発展的な型(重解タイプ)の一般項の求め方。基本形へ帰着させるための手順。有名頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。
数学(大学入試問題)

【漸化式14】分数型(発展)2実数解タイプ|解法パターン|数学B数列

漸化式の解き方・解法まとめ。分数型の発展的な型(2実数解タイプ)の一般項の求め方。基本形へ帰着させるための手順。有名頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。
数学(大学入試問題)

【漸化式】有名・頻出13パターン解法まとめ|数学B数列

等差・等比・階差・隣接二項間特性方程式の基礎基本から、分数・三項間・和と一般項・数学的帰納法型など,有名頻出重要パターンの解法のまとめ。漸化式は完全暗記であるため、しっかりと解法をマスターしよう!数学B:数列(漸化式)。2次試験・共通テスト(センター試験)・定期考査対策。
数学(大学入試問題)

【漸化式13】数学的帰納法型の漸化式|解法パターン|数学B数列

漸化式の解き方・解法まとめ。実験⇒予測⇒数学的帰納法にて証明の流れから一般項を求める。誘導形式で出題されることが多いが、知らない・見たことがない漸化式を見たら実験をする習慣を!差がつく頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。
数学(大学入試問題)

【整数問題まとめ】”素数”に関する頻出・良問まとめ

整数問題において「素数」は頻出・重要テーマ。素数は積に弱い、6m±1の形、合同式(mod)との相性、背理法、フェルマーの小定理などなど、様々な場面で登場。学校の授業ではあまり扱わないが入試頻出。演習として素数に特化した演習問題のまとめページ。2次試験対策にお役立てください。数学A:整数
数学(大学入試問題)

【漸化式12】連立型の漸化式|解法パターン|数学B数列

漸化式の解き方・解法まとめ。連立型の一般項の求め方。一方を実数倍して加え、等比数列として考える解法①。1文字消去を行い、隣接三項間特性方程式に帰着させる解法②。の2通りの解法を紹介。差がつく頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。
数学(大学入試問題)

【漸化式11】階比数列型|解法パターン|数学B数列

漸化式の解き方・解法まとめ。階比数列型の一般項の求め方。nをn-1,n-2,・・・,2,1と値を小さくしていくことで求める。 差がつく頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。隣接二項間。また別解も紹介。
数学(大学入試問題)

【漸化式10】和と一般項(Snとan)型|解法パターン|数学B数列

漸化式の解き方・解法まとめ。和と一般項が与式にある場合の一般項の求め方。頻a1=S1,a(n+1)=S(n+1)-Snの利用。定期考査、大学入試共通テスト、2次試験対策。
数学(大学入試問題)

【漸化式8,9】隣接三項間特性方程式(2実解,重解型)|解法パターン|数学B数列

漸化式の解き方・解法まとめ。隣接三項間特性方程式の異なる2つの実数解,重解型のタイプの一般項の求め方。基本形へ帰着させるために、特性方程式を解く。 頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。
数学(大学入試問題)

【漸化式7】n振分け型(階差数列の利用)|解法パターン|数学B数列

漸化式の解き方・解法まとめ。一般項の求め方。等比数列に帰着させる解法と階差数列に帰着させる解法を2通り。頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。2012センター試験過去問にて類題。
数学(大学入試問題)

【漸化式5,6】n乗型・分数型(基本)|解法パターン|数学B数列

漸化式の解き方・解法まとめ。n乗型、分数式基本的な型の一般項の求め方。基本形へ帰着させるために、n+1乗で割る、逆数をとる。またan≠0の背理法による証明。 頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。隣接二項間
数学(大学入試問題)

【漸化式4】隣接二項間特性方程式|解法パターン|数学B数列

漸化式の解き方・解法まとめ。隣接二項間特性方程式の一般項の求め方、頻出・最重要問題。定期考査、大学入試共通テスト、2次試験対策。
数学(大学入試問題)

【漸化式1,2,3】等差・等比・階差数列型|解法パターン|数学B数列

漸化式の解き方・解法まとめ。等差数列、等比数列、階差数列の一般項の求め方、基本3パターン。定期考査、共通テスト、2次試験対策。頻出。4STEP演習
数学(大学入試問題)

6^(n+2)+7^(2n+1)は43で割り切れる|帰納法,合同式を利用した解法2パターン

①数学的帰納法を用いた倍数証明②合同式(mod)を利用した証明の2通りの解法。頻出有名・基本問題。数学A整数,数学B数列。2次試験対策、過去問題演習。久留米大学・医学部。
数学(大学入試問題)

【09大阪教育大学】数学Ⅱの頻出テーマ:不等式の証明・相加相乗平均を利用した発展・応用問題

x>0,x^8(y-x^2)≧4を満たすとき,x(x+y)≧4の不等式の証明。有名・頻出の相加平均・相乗平均の関係を利用する発展・応用問題。誘導の流れに乗って考える。 数学2。2次試験対策、過去問演習。
数学(大学入試問題)

【2018東京工業大学】35x+91y+65z=3を満たす整数解、x^2+y^2の最小値

3文字の1次不定方程式。倍数・余り(剰余)に注目し、合同式(mod5,7,13)を利用した解法。整数値における2変数関数の最小値。数学A:整数問題。東工大過去問解説・演習。3元連立方程式の整数解の決定。
数学(大学入試問題)

【2020東京工業大学・第1問】| x^2-x-23 | ≡ 2(mod3)となる正整数x[合同式・素数]

2020東工大・過去問演習。絶対値と合同式(mod3)と素数に関する整数問題。2次試験対策。難関大学・整数問題対策。
大学受験情報

元塾講・現高校数学教師が厳選!【数学A:場合の数・確率】おすすめ参考書・問題集

場合の数・確率の勉強方法がわからない、苦手、武器にしたいという方におすすめのレベル別おすすめ参考書・問題集。ハッめざめる確率(東京出版/安田亨)、スバラシク強くなると評判の元気が出る数学(マセマ出版社/馬場 敬之)、教科書だけでは足りない大学入試攻略場合の数と確率(河合塾)、マスター・オブ・場合の数、解法の探究・確率(東京出版)。
数学(大学入試問題)

【2007京都大学】命題√n,√(n+1)はともに有理数?無理数?真偽証明

あるnに対してルートnとルート(n+1)はともに無理数、すべてのnに対して、ルート(n+1)ールートnは無理数であることの証明。数学1。命題(背理法)。真偽、論証問題。2007京大・文系(第5問)・数学過去問。2次試験対策。
数学(大学入試問題)

【2005防衛大学校】x+y+z=a,1/x+1/y+1/z=1/aのときx^n+y^n+z^nとa^nの大小|対称式

3つの基本対称式(x+y+z,xy+yz+zx,xyz)に関する問題。少なくとも1つはa。数学Ⅱ、等式・不等式の証明。大小関係。4STEP類題。
数学(大学入試問題)

【2021聖マリアンナ医科大学】データの分析と整数問題|分散の最大・最小

データの分析と整数問題の融合。データの分析(平均値、中央値(メジアン)、最頻値(モード)、分散、標準偏差、共分散、相関係数)の公式確認。入試問題演習。共通テスト対策、2次試験対策数学演習。医学部。
数学(大学入試問題)

【2020京都大学・第3問(文)】mn^2+am^2+n^2+8が16で割り切れる整数m,n|整数問題

偶数・奇数に注目した場合分け。難問のため、いかに部分点をとって差をつけられるかどうが大切。京都大学過去問演習。数学A整数問題。倍数問題。
数学(大学入試問題)

【差がつく】正領域と負領域の例題と考え方|数学Ⅱ:図形と方程式

直線と線分が交わるための条件範囲について。数学Ⅱの4STEPの問題を例題として正領域・負領域について考え方を説明。差がつく重要入試問題。2次試験対策、難関大学対策。
数学(大学入試問題)

【2021東北大学・文】共通接線と放物線で囲まれた図形の面積|頻出・重要問題

3次関数と2次関数の共通接線の求め方。2通りの解答を紹介。また、共通接線と2次関数で囲まれた面積。固まりとしての積分、共通テスト(センター試験)や私立受験のマーク形式テストで使える裏技面積公式。
数学(大学入試問題)

【漸化式15】分数型(発展)重解タイプ|解法パターン|数学B数列

漸化式の解き方・解法まとめ。分数型の発展的な型(重解タイプ)の一般項の求め方。基本形へ帰着させるための手順。有名頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。
数学(大学入試問題)

【漸化式14】分数型(発展)2実数解タイプ|解法パターン|数学B数列

漸化式の解き方・解法まとめ。分数型の発展的な型(2実数解タイプ)の一般項の求め方。基本形へ帰着させるための手順。有名頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。
数学(大学入試問題)

【漸化式】有名・頻出13パターン解法まとめ|数学B数列

等差・等比・階差・隣接二項間特性方程式の基礎基本から、分数・三項間・和と一般項・数学的帰納法型など,有名頻出重要パターンの解法のまとめ。漸化式は完全暗記であるため、しっかりと解法をマスターしよう!数学B:数列(漸化式)。2次試験・共通テスト(センター試験)・定期考査対策。
数学(大学入試問題)

【漸化式13】数学的帰納法型の漸化式|解法パターン|数学B数列

漸化式の解き方・解法まとめ。実験⇒予測⇒数学的帰納法にて証明の流れから一般項を求める。誘導形式で出題されることが多いが、知らない・見たことがない漸化式を見たら実験をする習慣を!差がつく頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。
数学(大学入試問題)

【整数問題まとめ】”素数”に関する頻出・良問まとめ

整数問題において「素数」は頻出・重要テーマ。素数は積に弱い、6m±1の形、合同式(mod)との相性、背理法、フェルマーの小定理などなど、様々な場面で登場。学校の授業ではあまり扱わないが入試頻出。演習として素数に特化した演習問題のまとめページ。2次試験対策にお役立てください。数学A:整数
数学(大学入試問題)

【漸化式12】連立型の漸化式|解法パターン|数学B数列

漸化式の解き方・解法まとめ。連立型の一般項の求め方。一方を実数倍して加え、等比数列として考える解法①。1文字消去を行い、隣接三項間特性方程式に帰着させる解法②。の2通りの解法を紹介。差がつく頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。
数学(大学入試問題)

【漸化式11】階比数列型|解法パターン|数学B数列

漸化式の解き方・解法まとめ。階比数列型の一般項の求め方。nをn-1,n-2,・・・,2,1と値を小さくしていくことで求める。 差がつく頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。隣接二項間。また別解も紹介。
数学(大学入試問題)

【漸化式10】和と一般項(Snとan)型|解法パターン|数学B数列

漸化式の解き方・解法まとめ。和と一般項が与式にある場合の一般項の求め方。頻a1=S1,a(n+1)=S(n+1)-Snの利用。定期考査、大学入試共通テスト、2次試験対策。
数学(大学入試問題)

【漸化式8,9】隣接三項間特性方程式(2実解,重解型)|解法パターン|数学B数列

漸化式の解き方・解法まとめ。隣接三項間特性方程式の異なる2つの実数解,重解型のタイプの一般項の求め方。基本形へ帰着させるために、特性方程式を解く。 頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。
数学(大学入試問題)

【漸化式7】n振分け型(階差数列の利用)|解法パターン|数学B数列

漸化式の解き方・解法まとめ。一般項の求め方。等比数列に帰着させる解法と階差数列に帰着させる解法を2通り。頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。2012センター試験過去問にて類題。
数学(大学入試問題)

【漸化式5,6】n乗型・分数型(基本)|解法パターン|数学B数列

漸化式の解き方・解法まとめ。n乗型、分数式基本的な型の一般項の求め方。基本形へ帰着させるために、n+1乗で割る、逆数をとる。またan≠0の背理法による証明。 頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。隣接二項間
数学(大学入試問題)

【漸化式4】隣接二項間特性方程式|解法パターン|数学B数列

漸化式の解き方・解法まとめ。隣接二項間特性方程式の一般項の求め方、頻出・最重要問題。定期考査、大学入試共通テスト、2次試験対策。
数学(大学入試問題)

【漸化式1,2,3】等差・等比・階差数列型|解法パターン|数学B数列

漸化式の解き方・解法まとめ。等差数列、等比数列、階差数列の一般項の求め方、基本3パターン。定期考査、共通テスト、2次試験対策。頻出。4STEP演習
数学(大学入試問題)

6^(n+2)+7^(2n+1)は43で割り切れる|帰納法,合同式を利用した解法2パターン

①数学的帰納法を用いた倍数証明②合同式(mod)を利用した証明の2通りの解法。頻出有名・基本問題。数学A整数,数学B数列。2次試験対策、過去問題演習。久留米大学・医学部。
数学(大学入試問題)

【09大阪教育大学】数学Ⅱの頻出テーマ:不等式の証明・相加相乗平均を利用した発展・応用問題

x>0,x^8(y-x^2)≧4を満たすとき,x(x+y)≧4の不等式の証明。有名・頻出の相加平均・相乗平均の関係を利用する発展・応用問題。誘導の流れに乗って考える。 数学2。2次試験対策、過去問演習。
数学(大学入試問題)

【2018東京工業大学】35x+91y+65z=3を満たす整数解、x^2+y^2の最小値

3文字の1次不定方程式。倍数・余り(剰余)に注目し、合同式(mod5,7,13)を利用した解法。整数値における2変数関数の最小値。数学A:整数問題。東工大過去問解説・演習。3元連立方程式の整数解の決定。
数学(大学入試問題)

【2020東京工業大学・第1問】| x^2-x-23 | ≡ 2(mod3)となる正整数x[合同式・素数]

2020東工大・過去問演習。絶対値と合同式(mod3)と素数に関する整数問題。2次試験対策。難関大学・整数問題対策。
数学(大学入試問題)

【2007京都大学】命題√n,√(n+1)はともに有理数?無理数?真偽証明

あるnに対してルートnとルート(n+1)はともに無理数、すべてのnに対して、ルート(n+1)ールートnは無理数であることの証明。数学1。命題(背理法)。真偽、論証問題。2007京大・文系(第5問)・数学過去問。2次試験対策。
数学(大学入試問題)

【2005防衛大学校】x+y+z=a,1/x+1/y+1/z=1/aのときx^n+y^n+z^nとa^nの大小|対称式

3つの基本対称式(x+y+z,xy+yz+zx,xyz)に関する問題。少なくとも1つはa。数学Ⅱ、等式・不等式の証明。大小関係。4STEP類題。
数学(大学入試問題)

【2021聖マリアンナ医科大学】データの分析と整数問題|分散の最大・最小

データの分析と整数問題の融合。データの分析(平均値、中央値(メジアン)、最頻値(モード)、分散、標準偏差、共分散、相関係数)の公式確認。入試問題演習。共通テスト対策、2次試験対策数学演習。医学部。
数学(大学入試問題)

【2020京都大学・第3問(文)】mn^2+am^2+n^2+8が16で割り切れる整数m,n|整数問題

偶数・奇数に注目した場合分け。難問のため、いかに部分点をとって差をつけられるかどうが大切。京都大学過去問演習。数学A整数問題。倍数問題。
数学(大学入試問題)

「2020の2020乗」と「2021の2019乗」の大小は?【2020兵庫医科大・医|二項定理】

数学Ⅱの二項定理を用いた大小関係の証明。また、補題として有名不等式k!と2のk-1乗の大小関係について。 頻出テーマを用いた、2次試験・記述対策。私立医学部数学の過去問演習。
数学(大学入試問題)

【整数問題まとめ】”素数”に関する頻出・良問まとめ

整数問題において「素数」は頻出・重要テーマ。素数は積に弱い、6m±1の形、合同式(mod)との相性、背理法、フェルマーの小定理などなど、様々な場面で登場。学校の授業ではあまり扱わないが入試頻出。演習として素数に特化した演習問題のまとめページ。2次試験対策にお役立てください。数学A:整数
数学(大学入試問題)

6^(n+2)+7^(2n+1)は43で割り切れる|帰納法,合同式を利用した解法2パターン

①数学的帰納法を用いた倍数証明②合同式(mod)を利用した証明の2通りの解法。頻出有名・基本問題。数学A整数,数学B数列。2次試験対策、過去問題演習。久留米大学・医学部。
数学(大学入試問題)

【2018東京工業大学】35x+91y+65z=3を満たす整数解、x^2+y^2の最小値

3文字の1次不定方程式。倍数・余り(剰余)に注目し、合同式(mod5,7,13)を利用した解法。整数値における2変数関数の最小値。数学A:整数問題。東工大過去問解説・演習。3元連立方程式の整数解の決定。
数学(大学入試問題)

【2020東京工業大学・第1問】| x^2-x-23 | ≡ 2(mod3)となる正整数x[合同式・素数]

2020東工大・過去問演習。絶対値と合同式(mod3)と素数に関する整数問題。2次試験対策。難関大学・整数問題対策。
数学(大学入試問題)

【2020京都大学・第3問(文)】mn^2+am^2+n^2+8が16で割り切れる整数m,n|整数問題

偶数・奇数に注目した場合分け。難問のため、いかに部分点をとって差をつけられるかどうが大切。京都大学過去問演習。数学A整数問題。倍数問題。
数学(大学入試問題)

【無限下降法】a^3+2b^3+4c^3=2abcを満たす整数はa=b=c=0のみを示せ|お茶の水女子大

背理法の一種である無限下降法の演習問題。有名問題であるが学校では学習しない差がつく頻出・良問。1985年お茶の水女子大学過去問。2次試験対策。数学A:整数問題
数学(大学入試問題)

【京大対策・整数問題演習】n^3-19n+33が素数となるnをすべて求めよ(2021明治大学・農)

2018京都大学・整数問題の類題。素数に関する頻出な良問題。京大対策演習に! 実験から規則を見つけ、合同式を利用して倍数証明。2次試験対策。[数学A:整数問題]
数学(大学入試問題)

【2021京都府立大学】x^2-4xy+7y^2+y-14=0を満たす整数解|頻出良問!整数問題

整数方程式。判別式による範囲の絞り込み。(必要条件で範囲を絞り、十分条件の確認) 共通テスト・2次試験対策。整数問題:頻出・重要・差がつく良問。京都府立大学、数学、過去問題
数学(大学入試問題)

2018年度第4問【整数問題】センター試験過去問解答・解説(数学ⅠA)

約数の個数。合同式を利用した特殊解の見つけ方。格子点を利用した1次不定方程式の解法。センター試験(共通テスト)対策。頻出重要・差がつく整数問題
数学(大学入試問題)

【2021奈良県医(後)】互いに素なm,nで、(m+n-1)!はm!n!で割り切れる証明

ユークリッドの互除法と 二項係数。ユークリッドの互除法の証明の流れ。 数学A整数問題。2次試験対策。最大公約数。
数学(大学入試問題)

【2021早稲田大学】n進法2021(n)で表されるが素数となるnの最小値|整数

n進数(n進法)と素数・合成数についての基礎基本入試問題演習。早稲田大学・人間科・第2問(3) 数学A:整数問題
数学(大学入試問題)

【頻出】f(k-1),f(k),f(k+1)が整数のとき,正の整数nでf(n)は整数

整数と関数の頻出総合問題。連立方程式から整数であることの証明、数学的帰納法を用いてf(n)が整数であることの証明。 2次試験対策。大学受験数学。過去問演習。
数学(大学入試問題)

【2020お茶の水女子大学】3^53-2^mの絶対値が最小となる整数m|桁数・最高位・1の位

【頻出】常用対数を利用した、桁数・最高位・一の位の求め方。また|3^53-2^m|が最小となる整数m。不等式による評価。2次試験対策。過去問演習。良問。
数学(大学入試問題)

【2021早稲田大学・商】2021以下で、正の約数の和が奇数である数の個数

やや難、整数問題。頻出の、正の約数の総和に関する問題。数学A。\(2021\) 以下の正の整数で、すべての正の約数の和が奇数であるものの個数について。入試問題演習。早慶、GMARCH、関関同立対策数学。
数学(大学入試問題)

2019年度第4問【整数問題】センター試験過去問解答・解説(数学ⅠA)

1次不定方程式の特殊解を合同式を利用した特殊解の見つけ方、格子点の利用による時間短縮(裏技)解法。数学1A整数問題。共通テスト過去問演習対策。大学入試センター試験・本試。
数学(大学入試問題)

2021年度第4問【整数問題】共通テスト過去問解答・解説(数学ⅠA)

2021年度大学入学共通テスト:数学ⅠA の第4問・整数問題の解説と解答。 1次不定方程式を格子点を用いた時短裏技で解く。
数学(大学入試問題)

今日は日曜日。100万日後は何曜日?2018琉球大学【整数・合同式(mod)】

整数問題。合同式を使う基礎・基本の演習問題。 周期性や余りに注目して合同式(mod)を使えるように。数学A。定期考査・2次試験・入試対策。
数学(大学入試問題)

2022明治大学・情報コミ[Ⅳ]n^3+8nが2n+1で割り切れるn

否定的命題は背理法。互いに素であることの証明は、最大公約数が1であることを示す、ユークリッドの互除法の利用など。 数学A:整数問題。私立大学・記述対策。考え方。2022過去問演習。GMARCH
数学(大学入試問題)

2018九州大学・理・第4問|2x^3+a^2x^2+2b^2x+1=0を満たす有理数xが存在する整数a,b

平方数は合同式(mod3,4)で処理できる、存在しない証明は背理法など、受験では頻出テーマのポイント、考え方を解説。 頻出・良問2次試験対策。数学A:整数問題。差がつく分野。
数学(大学入試問題)

2001京都大学・文・第3問|n^9-n^3は9で割り切れることを示せ

倍数証明。余りに注目(剰余類)した解答、合同式を利用した解答、連続する整数の積を利用した解答を紹介。 数学A:整数問題。京都大学過去問演習。頻出良問
数学(大学入試問題)

【2010京都教育大学】x^2-x-(a^2+5)=0を満たす自然数a、x

整数方程式。必要条件で考えて十分条件の確認。範囲の絞り込み、積の形に変形。 数学Aの典型・整数問題。頻出。2次試験対策。
数学(大学入試問題)

【京都大学・整数問題】良問・頻出過去問の考え方・解答まとめ

京都大学では頻出テーマの整数問題。正しい考え方を身につけ、得意分野に!素数・最大公約数(ユークリッド互除法)・合同式・倍数・余り・範囲の絞り込みなど、重要テーマのまとめ。
数学(大学入試問題)

【2017横浜市立大学・医学部】148953/298767を約分して、既約分数にせよ

倍数判定法。約分できるということ。最大公約数⇒ユークリッドの互除法の利用 数学A整数問題。医学部。2次試験・定期考査対策。
数学(大学入試問題)

【2021京都府立大学・生命環境】n^31-nを31で割った余り|背理法・数学的帰納法

(1)31は素数(2)31Crを31で割った余り(3)n^31-nを31で割った余りは0 証明・論証問題。素数、背理法・数学的帰納法、二項定理。2次試験対策。数学過去問題演習。
大学受験情報

元塾講・現高校数学教師が厳選!【数学A:場合の数・確率】おすすめ参考書・問題集

場合の数・確率の勉強方法がわからない、苦手、武器にしたいという方におすすめのレベル別おすすめ参考書・問題集。ハッめざめる確率(東京出版/安田亨)、スバラシク強くなると評判の元気が出る数学(マセマ出版社/馬場 敬之)、教科書だけでは足りない大学入試攻略場合の数と確率(河合塾)、マスター・オブ・場合の数、解法の探究・確率(東京出版)。
大学受験情報

【元塾・現数学教師が厳選!】偏差値60以上おすすめの数学問題集選!(発展編)

難関大学合格に向けて、厳選おすすめの問題集・参考書。 青チャート、標準問題精講、やさしい理系数学、良問プラチカ。数研出版、河合塾シリーズ。
大学受験情報

【元塾・現数学教師が厳選!】偏差値50~60おすすめの数学問題集2選!(標準編)

元塾講師、現役数学教師が選ぶ、受験勉強のスタートにおすすめの厳選2冊! 「基礎・標準問題精講義」、「文系の数学 重要事項完全習得編」
大学受験情報

【厳選!参考書・問題集】元塾講・現高校数学教師|目的・レベル別おすすめ(基礎編)

新高1、2、3年生へ!100冊以上の参考書、問題集の中から、目的・レベル別におすすめを紹介。 元塾講師、現役高校数学教師が選ぶ基礎力アップのための参考書、問題集。
数学(大学入試問題)

【大学受験数学で使える】背理法の典型4パターン

教科書レベルで背理法が使えるだけでなく、2次試験でしっかりと背理法を使いこなすために知っておきたい典型4パターンを例題を交えて説明。最後まで解けなくても、問題を見た時に方針が立てられるかどうかで差がつきます。まずは典型パターンをしっかりと身につけましょう!
大学受験情報

自己肯定感を高める方法5つの方法

ナルシストと自己肯定感が高い人は全く別。自己肯定感を高め、受験の成功、豊かな人生を。心理学の世界では有名な、自己肯定感を高める5つの方法を紹介。
大学受験情報

【元塾講師が教える】良い塾の特徴・選び方

良い塾には共通する特徴があります。自分にあった塾を選ぶために、4つのポイント(体験授業、お金の話、先生について、トイレを借りる)を押さえましょう。また、なぜ塾に行くのか?明確な目的をもち、より効果的に塾が活用できるようにしていきましょう。
大学受験情報

大学受験(国公立・私立)の入試スケジュールと種類

主な大学受験のスケジュールと種類をまとめました。まずは大枠を理解するためにシンプルに要点のみまとめています。大枠を理解してから、各大学ごとの入試システムを理解していきましょう。
大学受験情報

受験生の保護者としてやるべきこと、やってはいけないこと

受験は、子どもだけの戦いではない。生徒・保護者・学校(塾)が協力して戦う必要があります!受験生を持つ保護者が押さえておくべきポイントをまとめました。また子どもが保護者にしてほしいこと、してほしくないことのアンケートの結果をまとめました。
大学受験情報

2022年度入試に向けて(2021年度入試の分析)、夏休みの過ごし方。

初めて実施された大学共通テストから見えてきたもの、またコロナ禍が入試に与えた影響についてポイントをまとめました。さらに2022年度入試に向けて、この夏取り組みたいこと。
大学受験情報

全国模試編③ 模試の結果が返ってきたら(結果の見方)

模試の結果が返ってきたらどこを見る?どのように活用する? 模試の結果を上手に活用出来るかどうかは勉強効率に大きく影響。判定だけを見て一喜一憂していたらお金の無駄。しっかりと活用していくポイントを紹介。
大学受験情報

全国模試編② 受験すべき全国模試3選+α

大学志望校合格に向けて、全国模試を上手に活用する必要があります。数ある模試の中からどの模試を受験すべきであるか3つ選びました。志望校のレベルに合わせて受験し、志望校合格に近づきましょう。
大学受験情報

全国模試編① 偏差値とは何?

偏差値とは何か。また偏差値を1上げるために何点取ればよいのか計算方法を紹介。具体的に点数目標を立てることで、模試の復習もより効果的に。
大学受験情報

受験数学にセンスは必要か?それとも暗記?日々の復習の仕方について

受験数学においてセンスは必要ありません。大切なのは勉強習慣の確立。分かることとできることは違います。より効果的な予習・復習の仕方を身につけ、自分の勉強の仕方・学習スタイルを確立していきましょう!
タイトルとURLをコピーしました