【2011京都大学・理系・第1問[2]】
定積分 \displaystyle\int^{\frac{1}{2}}_{0}(x+1)\sqrt{1-2x^2} dx を求めよ.

根号(ルート)を含む積分についての有名・基本例題は⏬で確認を!

解答・解説
(与式) を I とおく.
I=\displaystyle\int^{\frac{1}{2}}_{0}x\sqrt{1-2x^2} dx+\displaystyle\int^{\frac{1}{2}}_{0}\sqrt{1-2x^2} dx より
I_{1}=\displaystyle\int^{\frac{1}{2}}_{0}x\sqrt{1-2x^2} dx , I_{2}=\displaystyle\int^{\frac{1}{2}}_{0}\sqrt{1-2x^2} dx とおく.
I_{1} について
t=1-2x^2 とおくと
\displaystyle\frac{dt}{dx}=-4x ,
x : 0 \rightarrow \displaystyle\frac{1}{2} のとき t : 1 \rightarrow \displaystyle\frac{1}{2} より
I_{1}=-\displaystyle\frac{1}{4}\displaystyle\int^{\frac{1}{2}}_{1} t^{\frac{1}{2}}dt
=-\displaystyle\frac{1}{4}\cdot\displaystyle\frac{2}{3}\Bigl[t^{\frac{3}{2}}\Bigr]^{\frac{1}{2}}_{1}
=\displaystyle\frac{1}{6}-\displaystyle\frac{\sqrt{2}}{24}
I_{2} について
I_{2}=\sqrt{2}\displaystyle\int^{\frac{1}{2}}_{0}\sqrt{\displaystyle\frac{1}{2}-x^2} dx
x=\displaystyle\frac{1}{\sqrt{2}}\sin\theta とおくと
\displaystyle\frac{dx}{d \theta}=\displaystyle\frac{1}{\sqrt{2}}\cos \theta ,
x : 0 \rightarrow \displaystyle\frac{1}{2} のとき \theta : 0 \rightarrow \displaystyle\frac{\pi}{4} より
I_{2}=\sqrt{2}\displaystyle\int^{\frac{\pi}{4}}_{0}\sqrt{\displaystyle\frac{1}{2}-\displaystyle\frac{1}{2}\sin^2\theta}\cdot\displaystyle\frac{1}{\sqrt{2}}\cos \theta d \theta
=\displaystyle\frac{1}{\sqrt{2}}\displaystyle\int^{\frac{\pi}{4}}_{0}\cos^2 \theta d \theta
=\displaystyle\frac{1}{\sqrt{2}}\displaystyle\int^{\frac{\pi}{4}}_{0}\displaystyle\frac{1+\cos 2 \theta}{2} d \theta
=\displaystyle\frac{1}{2\sqrt{2}}\Bigl[ \theta+\displaystyle\frac{1}{2}\sin 2 \theta\Bigr]^{\frac{\pi}{4}}_{0}
=\displaystyle\frac{\sqrt{2}}{16}\pi+\displaystyle\frac{\sqrt{2}}{8}
したがって求める定積分の値は,
I=I_{1}+I_{2}
=\displaystyle\frac{1}{6}-\displaystyle\frac{\sqrt{2}}{24}+\displaystyle\frac{\sqrt{2}}{16}\pi+\displaystyle\frac{\sqrt{2}}{8}
=\displaystyle\frac{1}{6}+\displaystyle\frac{\sqrt{2}}{12}+\displaystyle\frac{\sqrt{2}}{16}\pi

コメント