【2023藤田医科大学・医学部(一部)】
(1) 定積分 \(\displaystyle\int^{99}_{3}\sqrt{\sqrt{1+x}-1} dx\) を求めよ.
(2) 定積分 \(\displaystyle\int^{3}_{1}\sqrt{\displaystyle\frac{4}{x}-1} dx\) を求めよ.
解答・解説
(1) \(\displaystyle\int^{99}_{3}\sqrt{\sqrt{1+x}-1} dx\)
\(t=\sqrt{\sqrt{1+x}-1}\) とおくと
\((t^2+1)^2=1+x\) より
\(2(t^2+1)\cdot 2t\cdot dt=dx\)
よって,
\(\displaystyle\int^{99}_{3}\sqrt{\sqrt{1+x}-1} dx\)
\(=\displaystyle\int^{3}_{1}t\cdot 2(t^2+1)\cdot 2t dt\)
\(=\displaystyle\int^{3}_{1}4(t^4+t^2) dt\)
\(=4\Bigl[\displaystyle\frac{t^5}{5}+\displaystyle\frac{t^3}{3}\Bigr]^{3}_{1}\)
\(=\displaystyle\frac{3424}{15}\)
(2) \(\displaystyle\int^{3}_{1}\sqrt{\displaystyle\frac{4}{x}-1} dx\)
\(x=4\cos^2 \theta\) \(\left(0≦\theta<\displaystyle\frac{\pi}{2}\right)\) とおくと
\(dx=-8\sin \theta\cos \theta dθ\) より
\(\displaystyle\int^{3}_{1}\sqrt{\displaystyle\frac{4}{x}-1} dx\)
\(=\displaystyle\int^{\frac{\pi}{6}}_{\frac{\pi}{3}}\sqrt{\displaystyle\frac{1}{\cos^2 \theta}-1}\cdot(-8)\sin \theta\cos \theta dθ\)
\(1+\tan^2 \theta=\displaystyle\frac{1}{\cos^2 \theta}\) より
(与式)\(=8\displaystyle\int^{\frac{\pi}{3}}_{\frac{\pi}{6}}\sqrt{\tan^2 \theta} \sin \theta\cos \theta dθ\)
\(\displaystyle\frac{\pi}{6}≦ \theta≦\displaystyle\frac{\pi}{3}\) のとき
\(\sqrt{\tan^2 \theta}=|\tan\theta|=\tan\theta=\displaystyle\frac{\sin \theta}{\cos \theta}\) より
(与式)\(=8\displaystyle\int^{\frac{\pi}{3}}_{\frac{\pi}{6}}\sin^2\theta dθ\)
半角の公式 \(\sin^2 \theta=\displaystyle\frac{1-\cos 2 \theta}{2}\) より
(与式)\(=4\displaystyle\int^{\frac{\pi}{3}}_{\frac{\pi}{6}}(1-\cos 2 \theta) dθ\)
\(=4\Bigl[ \theta-\displaystyle\frac{\sin 2 \theta}{2}\Bigr]^{\frac{\pi}{3}}_{\frac{\pi}{6}}\)
\(=\displaystyle\frac{2\pi}{3}\)
コメント