2021年入試問題

数学(大学入試問題)

【2021東北大学・文】共通接線と放物線で囲まれた図形の面積|頻出・重要問題

3次関数と2次関数の共通接線の求め方。2通りの解答を紹介。また、共通接線と2次関数で囲まれた面積。固まりとしての積分、共通テスト(センター試験)や私立受験のマーク形式テストで使える裏技面積公式。
数学(大学入試問題)

【2021聖マリアンナ医科大学】データの分析と整数問題|分散の最大・最小

データの分析と整数問題の融合。データの分析(平均値、中央値(メジアン)、最頻値(モード)、分散、標準偏差、共分散、相関係数)の公式確認。入試問題演習。共通テスト対策、2次試験対策数学演習。医学部。
数学(大学入試問題)

3人でじゃんけん、n回目に勝者が1人決まる確率【2021埼玉大学・理】

【頻出】じゃんけんの確率の考え方。n回じゃんけんを行い、勝者が1人となる確率、あいこの確率。 数学A:確率。定期考査,2次試験対策。私大対策数学。
数学(大学入試問題)

【2021早稲田大学・商】1/x+2/y+3/z=1のとき(x-1)(y-2)(z-3)の最小値|相加・相乗平均

逆数の和、和や積の形、最大値・最小値の関係の問題を見たら、相加平均・相乗平均の関係を疑う!頻出重要テーマで、ただ公式を覚えるだけではダメ!しっかりと使いこなせるように。 GMARCH、関関同立、2次試験数学対策。
数学(大学入試問題)

【2021上智大学・理工】7の35乗は何桁?|常用対数(桁数)・近似値

頻出・常用対数の近似値の評価、桁数問題。数学Ⅱ指数・対数関数。2次試験対策。GMRCH、関関同立対策。
数学(大学入試問題)

【京大対策・整数問題演習】n^3-19n+33が素数となるnをすべて求めよ(2021明治大学・農)

2018京都大学・整数問題の類題。素数に関する頻出な良問題。京大対策演習に! 実験から規則を見つけ、合同式を利用して倍数証明。2次試験対策。[数学A:整数問題]
数学(大学入試問題)

【2021京都府立大学】x^2-4xy+7y^2+y-14=0を満たす整数解|頻出良問!整数問題

整数方程式。判別式による範囲の絞り込み。(必要条件で範囲を絞り、十分条件の確認) 共通テスト・2次試験対策。整数問題:頻出・重要・差がつく良問。京都府立大学、数学、過去問題
数学(大学入試問題)

【2021奈良県医(後)】互いに素なm,nで、(m+n-1)!はm!n!で割り切れる証明

ユークリッドの互除法と 二項係数。ユークリッドの互除法の証明の流れ。 数学A整数問題。2次試験対策。最大公約数。
数学(大学入試問題)

【2021早稲田大学】n進法2021(n)で表されるが素数となるnの最小値|整数

n進数(n進法)と素数・合成数についての基礎基本入試問題演習。早稲田大学・人間科・第2問(3) 数学A:整数問題
数学(大学入試問題)

【2021早稲田大学・商】2021以下で、正の約数の和が奇数である数の個数

やや難、整数問題。頻出の、正の約数の総和に関する問題。数学A。\(2021\) 以下の正の整数で、すべての正の約数の和が奇数であるものの個数について。入試問題演習。早慶、GMARCH、関関同立対策数学。
数学(大学入試問題)

【2021京都教育大学】倍数証明・命題(十分条件だが必要条件でない)証明

3と8は互いに素であるから、「24の倍数」と「3の倍数かつ8の倍数」は同値。連続する3整数の積であることに注目し証明。 また命題の「偽」の証明は、反例を見つける。数学A命題(必要条件・十分条件・真偽)
数学(大学入試問題)

2021年度第4問【整数問題】共通テスト過去問解答・解説(数学ⅠA)

2021年度大学入学共通テスト:数学ⅠA の第4問・整数問題の解説と解答。 1次不定方程式を格子点を用いた時短裏技で解く。
数学(大学入試問題)

【2021京都府立大学・生命環境】n^31-nを31で割った余り|背理法・数学的帰納法

(1)31は素数(2)31Crを31で割った余り(3)n^31-nを31で割った余りは0 証明・論証問題。素数、背理法・数学的帰納法、二項定理。2次試験対策。数学過去問題演習。
数学(大学入試問題)

【2021九州大学・理・第5問】nCk=p(素数)となる自然数n,k

二項係数と素数に関する証明問題。整数問題。 具体的な実験、(1)の結果から方針を見出す。数学A。2次試験対策。過去問題演習
数学(大学入試問題)

777の777乗の一の位、7の7乗の7乗の一の位|2021成城大学

一の位は規則性をもつ。実験から周期性を見つける。また周期性を持つことについて、補足として証明を与える。 合同式(mod 10)の利用。数学A整数問題。2次試験対策、定期考査対策。過去問題演習
数学(大学入試問題)

【2021九州大学・文】不等式y≧xt-2t^2の成立条件(2次不等式)最小値

【頻出重要入試問題】すべての実数に対して成り立つ2次不等式についての考え方。 また、範囲が与えられた時の2次不等式の考え方について
数学(大学入試問題)

【整数問題(素数)】n^k+kが素数|実験することの大切さ|2021 東京学芸大学

整数問題の極意は、「実験」から規則・法則を見出し、方針を見つけていくこと! しっかりと手を動かし、実験を行う練習として良問です。
数学(大学入試問題)

2021 一橋大学(第5問)|積分・確率・整数(総合問題)

定積分の平行移動、偶関数・奇関数による計算の工夫。 積分、整数問題の総合問題演習。
数学(大学入試問題)

2021 北海道大学(後期)|整数問題[平方・指数→合同式の利用]

整数問題において、平方数・指数はmod3,4が有効!また整数問題全般に使える積の形に変形、絞り込み作業と、この1問で多くのポイントが学習できる良問。
数学(大学入試問題)

2021京都工芸繊維大学|mのm-1乗を8で割った余り・整数問題(合同式modの利用)

整数問題の大原則(実験、予想、証明)の流れの演習を行うのに良い演習問題としての1問。 実験の中から8で割った余り、合同式を利用して証明。2次試験対策。数学A整数
数学(大学入試問題)

【2021早稲田大学・社会】n 進法・整数問題

入試問題演習としての1問。2次試験対策。数学A
数学(大学入試問題)

2021 東京海洋大学|背理法・倍数証明・合同式の利用

三平方の定理を満たす時、1つは必ず5の倍数? 背理法、合同式を用いて倍数証明を考える入試問題演習。
数学(大学入試問題)

2021 一橋大学[整数]1000以下の素数は250個以下であることを示せ

素数に関する一行問題。集合を用いた解法と、オイラー関数を利用した解法を紹介。 【参考】1000以下の素数は168個
数学(大学入試問題)

2021 兵庫県立大学【整数】平方数には合同式(mod)を使え!

平方数、指数はmod 3 や mod 4 が有効。教科書では学習できない内容を、基本的な入試問題を用いて考え方を解説。 経験の差が得点の差に直結する整数問題の解法まとめ。
タイトルとURLをコピーしました