数学Ⅰ

整数問題

1990京都大学【整数問題・素数】B=60、bは整数、a、cは素数のとき、△ABCは正三角形

素数は積の形に弱い。余弦定理から積の形に変形。数学A整数問題。2次試験対策。良問。過去問題演習。
集合と命題

2022慶應義塾大学・理工学【整数問題・ガウス記号】nと[(3n+2)/2]の積が6の倍数となる必要十分条件

実験から規則、法則を見つけ、答えを予想。整数問題・ガウス記号。数学A入試問題解説。2022年慶應義塾大学理工学部の過去問題。
集合と命題

2022立命館大学・全学統一方式[文系2/2実施]整数問題・集合・素数

集合の記号のまとめ。剰余類、素数、合同式。定期考査対策、数学2次試験対策。基礎基本の整数問題演習良問。
図形と方程式

【2021九州大学・文】不等式y≧xt-2t^2の成立条件(2次不等式)最小値

【頻出重要入試問題】すべての実数に対して成り立つ2次不等式についての考え方。また、範囲が与えられた時の2次不等式の考え方について
ベクトル

平面図形|解法研究・思考力を鍛える【1994 名古屋大学】

平面図形の問題は、幾何・座標・ベクトルの3つを考える習慣を身につけることが大切。分野を決めつけず、3タイプを考える癖をつけるための演習問題
集合と命題

2006 京都大学・後期[第6問] tan 1° は有理数か

初見の問題に対する考え方・方針の立て方について説明。背理法、加法定理を用いた、有名入試問題。三角関数、加法定理、2倍角、背理法
2次関数

2014 京都大学|判別式と三角比|基本問題

4次方程式が少なくとも1つ虚数解を持つことの証明。判別式、三角比の基本的な性質だけで解ける基礎問題入試演習。
ベクトル

【予選決勝(1文字固定)法】2変数関数の最大・最小|平方の和(ベクトル利用)の別解

入試頻出。重要問題である、2変数関数の最大値・最小値の求め方。また、ベクトルを利用した別解を紹介。
2次関数

2021 学習院大学・理学部|ある範囲で\(f(x)>0\)を満たす条件[2次不等式]

関数全般で使える頻出Point。ある範囲で\(f(x)>0\)を満たすとき、最小値に注目して処理を行う。ただ答えを求めるだけでなく、考え方を学ぶための1問。
数と式

【2重根号の外し方】4パターン・数学Ⅰ

2重根号とは。4つの例題を交えながら、2重根号の外し方を丁寧に解説。4STEP
集合と命題

【整数問題】素数・背理法| 総合問題

【数学ⅠA】背理法と素数(整数問題)の総合問題。難関大学受験数学の実践演習問題。また、「互いに素な2つの整数の、和と積も互いに素である」の有名性質を利用した別解も紹介。
数と式

【絶対値】方程式・不等式の解き方

絶対値の方程式・不等式のパターン3つの解き方のまとめ。原点からの距離でとらえる、絶対値の中の符号で場合分け
数と式

【絶対値の外し方(基本)】符号をとるは間違い

絶対値を外すときに、符号をとると覚えている人は間違い。正しく絶対値の外し方を学びましょう。また、差がつくルートと絶対値の関係についてのまとめ。
共通テスト(センター試験)

【時短裏技】共通テスト|データの分析(変量の変換・標準化)

数学ⅠA データの分析の「変量の変換」「標準化」についてまとめ。2017、2019年のセンター試験の過去問を用いて解説。時短裏技のまとめ。平均、分散、標準偏差、共分散、相関係数公式まとめ。
三角関数

【cos36°】解法2種類(倍角の公式利用)と(二等辺三角形で余弦定理)

cos36°の値を、2通りの方法で求める。三角関数の2倍角、3倍角を利用した解法。二等辺三角形で余弦定理を利用した解法。cosπ/5の値。
数と式

【17藤田保健衛生大・医】5乗根・対称式

5乗根の処理の仕方。対称式。医学部数学の問題を用いて、入試有名問題を解説。
数と式

【因数分解】解法手順・公式まとめ

共通因数でまとめる、公式利用、最低次数の文字で降べきの順に並べるなど、因数分解の手順のまとめ。新高校1年。予習・復習。4STEP。定期考査対策。
東京大学

【2000東京大学】2変数関数(予選決勝法・1文字固定法)

2次関数で入試頻出の2変数関数問題の考え方。1文字を固定して考える予選決勝法を身につけるための考え方を解説。
式と証明

最大値とは?等号成立の必要性について

以下「≦」の記号の意味は「<」または「=」であることの確認がまず第一。その上で、最大値・最小値の定義にを考えると、等号成立の重要性が理解できる。
2次関数

【一橋大学・過去問】不等式の成立条件(2次不等式)

すべての実数に対して成り立つ2次不等式についての考え方。また、範囲が与えられた時の2次不等式の考え方について、一橋大学の過去問を用いて解説。
集合と命題

2021 京都大学(理系:第6問)3^n-2^nが素数ならばnも素数【背理法】

素数に関する証明問題(素数は積に弱い!)。整数問題は、ただ解答を読んで勉強しても、わかった気になるだけで、解けるようにはなりません。どのように整数問題を考えるのか、考え方・思考の仕方について解説。受験数学の思考力を鍛えるための問題です。
分野まとめ

【大学受験数学で使える】背理法の典型4パターン

教科書レベルで背理法が使えるだけでなく、2次試験でしっかりと背理法を使いこなすために知っておきたい典型4パターンを例題を交えて説明。最後まで解けなくても、問題を見た時に方針が立てられるかどうかで差がつきます。まずは典型パターンをしっかりと身につけましょう!
2次関数

【頻出】2次関数の解の配置(分離):1より大きい異なる2つの解、異符号の解など2パターン完全マスター

2次関数で絶対におさえたい2テーマのうちの1つ。ただ解を持つだけでなく「ある範囲に解をもつ」タイプの問題(解の配置)を完全マスター。例:正の異なる2つの実数解。1より大きい異なる2つの解。異符号の解など。定期テストや入試では頻出テーマになります。解法2パターン。
2次関数

【最重要】軸・範囲が動く2次関数の最大値・最小値の場合分け

2次関数の、「軸が動くMax・min問題」や、「範囲の両端が動くMax・min問題」は定期考査、共通テスト(センター試験)、2次試験まで頻出・重要テーマ。場合分けと聞くと苦手である人が多いが、両方のタイプの解法は全く同じで、完全パターンもの。しっかりとパターンを覚え、早く処理できるように例題を交えて演習。