数列

数学(大学入試問題)

【漸化式15】分数型(発展)重解タイプ|解法パターン|数学B数列

漸化式の解き方・解法まとめ。分数型の発展的な型(重解タイプ)の一般項の求め方。基本形へ帰着させるための手順。有名頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。
数学(大学入試問題)

【漸化式14】分数型(発展)2実数解タイプ|解法パターン|数学B数列

漸化式の解き方・解法まとめ。分数型の発展的な型(2実数解タイプ)の一般項の求め方。基本形へ帰着させるための手順。有名頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。
数学(大学入試問題)

【漸化式】有名・頻出13パターン解法まとめ|数学B数列

等差・等比・階差・隣接二項間特性方程式の基礎基本から、分数・三項間・和と一般項・数学的帰納法型など,有名頻出重要パターンの解法のまとめ。漸化式は完全暗記であるため、しっかりと解法をマスターしよう!数学B:数列(漸化式)。2次試験・共通テスト(センター試験)・定期考査対策。
数学(大学入試問題)

【漸化式13】数学的帰納法型の漸化式|解法パターン|数学B数列

漸化式の解き方・解法まとめ。実験⇒予測⇒数学的帰納法にて証明の流れから一般項を求める。誘導形式で出題されることが多いが、知らない・見たことがない漸化式を見たら実験をする習慣を!差がつく頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。
数学(大学入試問題)

【漸化式12】連立型の漸化式|解法パターン|数学B数列

漸化式の解き方・解法まとめ。連立型の一般項の求め方。一方を実数倍して加え、等比数列として考える解法①。1文字消去を行い、隣接三項間特性方程式に帰着させる解法②。の2通りの解法を紹介。差がつく頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。
数学(大学入試問題)

【漸化式11】階比数列型|解法パターン|数学B数列

漸化式の解き方・解法まとめ。階比数列型の一般項の求め方。nをn-1,n-2,・・・,2,1と値を小さくしていくことで求める。 差がつく頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。隣接二項間。また別解も紹介。
数学(大学入試問題)

【漸化式10】和と一般項(Snとan)型|解法パターン|数学B数列

漸化式の解き方・解法まとめ。和と一般項が与式にある場合の一般項の求め方。頻a1=S1,a(n+1)=S(n+1)-Snの利用。定期考査、大学入試共通テスト、2次試験対策。
漸化式

【漸化式8,9】隣接三項間特性方程式(2実解,重解型)|解法パターン|数学B数列

漸化式の解き方・解法まとめ。隣接三項間特性方程式の異なる2つの実数解,重解型のタイプの一般項の求め方。基本形へ帰着させるために、特性方程式を解く。 頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。
数学(大学入試問題)

【漸化式7】n振分け型(階差数列の利用)|解法パターン|数学B数列

漸化式の解き方・解法まとめ。一般項の求め方。等比数列に帰着させる解法と階差数列に帰着させる解法を2通り。頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。2012センター試験過去問にて類題。
数学(大学入試問題)

【漸化式5,6】n乗型・分数型(基本)|解法パターン|数学B数列

漸化式の解き方・解法まとめ。n乗型、分数式基本的な型の一般項の求め方。基本形へ帰着させるために、n+1乗で割る、逆数をとる。またan≠0の背理法による証明。 頻出・重要問題。定期考査、大学入試共通テスト、2次試験対策。隣接二項間
数学(大学入試問題)

【漸化式4】隣接二項間特性方程式|解法パターン|数学B数列

漸化式の解き方・解法まとめ。隣接二項間特性方程式の一般項の求め方、頻出・最重要問題。定期考査、大学入試共通テスト、2次試験対策。
数学(大学入試問題)

【漸化式1,2,3】等差・等比・階差数列型|解法パターン|数学B数列

漸化式の解き方・解法まとめ。等差数列、等比数列、階差数列の一般項の求め方、基本3パターン。定期考査、共通テスト、2次試験対策。頻出。4STEP演習
数学(大学入試問題)

6^(n+2)+7^(2n+1)は43で割り切れる|帰納法,合同式を利用した解法2パターン

①数学的帰納法を用いた倍数証明②合同式(mod)を利用した証明の2通りの解法。頻出有名・基本問題。数学A整数,数学B数列。2次試験対策、過去問題演習。久留米大学・医学部。
数学(大学入試問題)

【2021京都府立大学・生命環境】n^31-nを31で割った余り|背理法・数学的帰納法

(1)31は素数(2)31Crを31で割った余り(3)n^31-nを31で割った余りは0 証明・論証問題。素数、背理法・数学的帰納法、二項定理。2次試験対策。数学過去問題演習。
数列

【2003神戸大学・後期(改)】anを6^nで割った余りが1[数学的帰納法・合同式]

自然数に関する証明⇒数学的帰納法。別解として合同式を利用した証明。 数学A:整数問題、数学B:数列。神戸大学・後期試験過去問。過去問題演習
数学(大学入試問題)

【確率漸化式】2020大阪大学・文系[第2問] 解き方・考え方|入試問題演習

学校の授業ではあまり扱われないが、数学の2次試験では頻出重要テーマの確率漸化式について、考え方、立式の仕方について解説。 数学Aの確率、数学Bの数列(漸化式)の融合総合問題。2次試験対策に!
数列

2002東京大学・文理共通[第2問整数・数列] 余り、互いに素、数学的帰納法、背理法

数学2次試験対策。たしかめ算からの立式、余りに注目。 互いに素であることを、数学的帰納法、背理法を用いて証明。考え方を解説。整数問題良問
数学(大学入試問題)

2017東京大学・文理共通[第4問整数・数列] 2段仮定の帰納法、ユークリッド互除法

対称式、数学的帰納法(2段仮定)、ユークリッド互除法という典型問題。 頻出有名問題で、経験の差が大きく影響する良問。考え方、流れ、方針を確認。
数列

2018東京大学・理系[第2問整数]anが整数となるn|規約分数・減少数列

既約分数(互いに素)であることの証明。整数問題の極意である実験の大切さ、また単調に増加・減少する数列に関する整数問題。 総合力が問われる、2次試験対策として良問。
数学(大学入試問題)

医学部(難関理系)攻略|三角関数・数学的帰納法(2段仮定)考え方【滋賀医科大学】

三角比の定義、3倍角、和積の公式、減少関数、偶関数など、三角関数のポイントが多く詰まった良問。 また、背理法、2段仮定の数学的帰納法と、方針・考え方を学ぶことができる1問。
数学(大学入試問題)

【差がつく・頻出】数学的帰納法(2段仮定)・対称式

数学的帰納法(2段仮定)は、一度経験しているかどうかの差がはっきりとつきます。 2020年の広島市立大学・第2問の誘導が丁寧な問題を用いて演習。頻出・重要入試問題
数学(大学入試問題)

\(\displaystyle\sum_{k=1}^{10}{(-1)^{k}・k・_{10}\rm{C}_{k}}\)|二項定理

二項定理に関する入試問題演習。 組合せCに関する性質を用いて計算処理。差がつく良問。
数学(大学入試問題)

2021 神戸大学・文系・第1問【数学的帰納法】

実験から規則を予想し、一般化。それを数学的帰納法を用いて証明する、入試数学における典型問題。 複素数の計算(数学Ⅱ)と、数学的帰納法(数学B)の融合問題。過去問演習。
数学(大学入試問題)

☆頻出【2次試験で差がつく】確率漸化式の考え方、立式の仕方!

確率漸化式の問題が解けるようになるためには、①確率漸化式の問題と気がつくこと、②立式、③漸化式を解く の3つの力が必要。①、②に特化して説明。考え方、思考の仕方について推移図を用いて説明。
タイトルとURLをコピーしました