2次関数

共通テスト(センター試験)

【2021共通テスト(第2日程)】数学ⅠA:第2問[1](2次関数)|売上,利益の最大値

文化祭で出店。売り上げ、利益の最大値について2次関数を利用して考える。会話分から考える典型・新傾向の問題。大学共通テスト対策。センター試験過去問演習。数学ⅠA:2次関数
共通テスト(センター試験)

【2021共通テスト(第1日程)】数学ⅠA:第2問[1](2次関数)|ストライドとピッチの関係

陸上競技の短距離走のストライドとピッチの関係から2次関数の範囲と最大値を考える。誘導の流れにしっかりとのればそこまで難しくない問題。大学共通テスト対策。センター試験過去問演習。数学ⅠA:2次関数
共通テスト(センター試験)

【2022共通テスト】数学ⅠA:第2問[1](2次関数、集合と命題)|会話形式

2次方程式の実数解の個数。会話形式、誘導問題。文字定数を変化させてグラフの動きを考える。包含関係から必要条件、十分条件を考える。共通テスト・会話形式新傾向問題。大学共通テスト対策。センター試験過去問演習。数学ⅠA:2次関数、集合と命題
ベクトル

【2007京都大学】空間上の2直線上の点の距離の最小値|媒介変数表示、2変数関数(予選決勝法)の利用

媒介変数を利用して空間上の直線を表現し、直線上の2点P、Qの距離の最小値を考える。解法1としては、予選決勝法(1文字固定)を利用した解答。解法2としては、方向ベクトルとPQベクトルが垂直(内積が0)であることを利用した解答。京都大学2次対策。過去問演習。数学B空間ベクトル。
2次関数

置き換えによる2次関数の最大・最小[4STEP 162番]頻出重要問題・複二次式

頻出問題。複2次式:置き換えたら範囲の確認。4次関数を置き換えによって2次関数の最大最小問題として考える。 三角・指数・対数など、他分野においても頻出重要テーマ。数学Ⅰ:4ステップ。定期考査対策、2次試験対策。
2次関数

【共通解問題】2次方程式の共通な解|4STEP181

4ステップやチャートにも掲載される2次方程式の共通な解を求める有名・頻出問題。 2次試験対策、定期考査対策として考え方を身に付けましょう。
2次関数

【2次関数・有名問題】すべて・ある実数に対してf(x)>g(x)の成立条件

2次関数の有名問題。2つの2次関数のグラフの上下関係(不等式)を満たす条件。 最大値、最小値の関係に注目。定期考査・2次試験対策。数学Ⅰ
2021年入試問題

【2021九州大学・文】不等式y≧xt-2t^2の成立条件(2次不等式)最小値

【頻出重要入試問題】すべての実数に対して成り立つ2次不等式についての考え方。 また、範囲が与えられた時の2次不等式の考え方について
京都大学

2014 京都大学|判別式と三角比|基本問題

4次方程式が少なくとも1つ虚数解を持つことの証明。 判別式、三角比の基本的な性質だけで解ける基礎問題入試演習。
ベクトル

【予選決勝(1文字固定)法】2変数関数の最大・最小|平方の和(ベクトル利用)の別解

入試頻出。重要問題である、2変数関数の最大値・最小値の求め方。 また、ベクトルを利用した別解を紹介。
2021年入試問題

2021 学習院大学・理学部|ある範囲で\(f(x)>0\)を満たす条件[2次不等式]

関数全般で使える頻出Point。ある範囲で\(f(x)>0\)を満たすとき、最小値に注目して処理を行う。 ただ答えを求めるだけでなく、考え方を学ぶための1問。
東京大学

【2000東京大学】2変数関数(予選決勝法・1文字固定法)

2次関数で入試頻出の2変数関数問題の考え方。1文字を固定して考える予選決勝法を身につけるための考え方を解説。
式と証明

最大値とは?等号成立の必要性について

以下「≦」の記号の意味は「<」または「=」であることの確認がまず第一。 その上で、最大値・最小値の定義にを考えると、等号成立の重要性が理解できる。
2次関数

【一橋大学・過去問】不等式の成立条件(2次不等式)

すべての実数に対して成り立つ2次不等式についての考え方。 また、範囲が与えられた時の2次不等式の考え方について、一橋大学の過去問を用いて解説。
2次関数

【頻出】2次関数の解の配置(分離):1より大きい異なる2つの解、異符号の解など2パターン完全マスター

2次関数で絶対におさえたい2テーマのうちの1つ。ただ解を持つだけでなく「ある範囲に解をもつ」タイプの問題(解の配置)を完全マスター。 例:正の異なる2つの実数解。1より大きい異なる2つの解。異符号の解など。定期テストや入試では頻出テーマになります。解法2パターン。
2次関数

2変数関数の最大値・最小値【1文字固定法(予選決勝法)】

1文字固定(予選決勝法)と言われる大学受験では頻出テーマについて考え方を身につけよう。 2次関数の最大値、最小値。数学2次試験対策。頻出・良問
タイトルとURLをコピーしました