複素数と方程式

複素数平面まとめ(数Ⅲ)

【2003京都大学】1の虚数立方根w(オメガ)、因数定理

多項式 (x^{100}+1)^{100}+(x^2+1)^{100}+1 は多項式 x^2+x+1 で割り切れるか.オメガ(w)を利用した有名入試問題。2003京都大学・過去問演習・対策。数学Ⅱ;複素数と方程式
複素数と方程式

整式の重解条件|f(x)が(x-a)^2で割り切れる条件について

(x-a)^2で割り切れるf(x)について。積の微分(数学Ⅲの範囲)を利用した解法。(x-a)^2で割り切れるとき、f(a)=f'(a)=0は必要十分条件(同値)の関係となる。またその拡張について。整式の割り算(因数定理)。数学Ⅱ。頻出入試問題演習、対策。広島大学過去問。
2021年入試問題

【2021近畿大学・文系】1の立方根の虚数解:ω(オメガ)とは?ωの性質と演習問題

1の3乗根「x^3=1」の虚数解の1つをω。このとき関係式「ω^3=1」「ω^2+ω+1=0」が成り立つ。1,ω,ω^2の周期性、次数下げを用いて考える。数学Ⅱ:複素数と方程式。頻出・有名入試問題。近大過去問。産近甲龍。関関同立。私立大学受験対策。
式と証明

【2005防衛大学校】x+y+z=a,1/x+1/y+1/z=1/aのときx^n+y^n+z^nとa^nの大小|対称式

3つの基本対称式(x+y+z,xy+yz+zx,xyz)に関する問題。少なくとも1つはa。数学Ⅱ、等式・不等式の証明。大小関係。4STEP類題。
2021年入試問題

【2021早稲田大学・商】1/x+2/y+3/z=1のとき(x-1)(y-2)(z-3)の最小値|相加・相乗平均

逆数の和、和や積の形、最大値・最小値の関係の問題を見たら、相加平均・相乗平均の関係を疑う!頻出重要テーマで、ただ公式を覚えるだけではダメ!しっかりと使いこなせるように。 GMARCH、関関同立、2次試験数学対策。
複素数と方程式

【2004京都大・文(後期)】f(x+y)=f(x)f(y),f(3)=8のときf(1)の値

解析的分野の論証問題。差がつく良問。2004京都大学・文系・後期試験過去問解説。
複素数と方程式

【剰余の定理・因数定理(たしかめ算)】2004神戸大学・後期

剰余の定理・因数定理は覚える必要はない!大切なのは、小学生で学習した「たしかめ算」 数学Ⅱ、入試問題演習。2次試験対策。背理法。過去問題演習。
複素数と方程式

3つの相加・相乗平均の関係|実践問題【慶応義塾大学】

相加平均・相乗平均の関係は入試頻出テーマ。 ただ公式を覚えているだけでは使えません。しっかりと使うタイミングを練習するための良問。
複素数と方程式

3次方程式の解と係数の関係|新潟大学・医

3次方程式の解と係数の関係を利用する入試問題演習。2次試験対策。医学部。数学Ⅱ
2021年入試問題

2021 近畿大学【数学Ⅱ・高次方程式】x=1+√5 i のときx^3-3x^2+3x-1の値

高次方程式の差がつく計算。ガッツだけで計算すると、時間もかかり、ミスも生じやすい。 3次関数(微分)の極値を求める際の計算など、使えるようになって欲しい次数下げ(式の割り算)計算テクニック。関関同立、産近甲龍対策。
数と式

【17藤田保健衛生大・医】5乗根・対称式

5乗根の処理の仕方。対称式。医学部数学の問題を用いて、入試有名問題を解説。
複素数と方程式

係数が左右対称な【相反方程式】の解き方

係数が左右対称な式を相反方程式という。相反方程式の解法は、最高次が偶数と奇数ののときでそれぞれ決まっている。解法手順のまとめ。
タイトルとURLをコピーしました